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Abstract

Genome-wide association studies (GWAS) using longitudinal phenotypes collected over time is appealing due to the
improvement of power. However, computation burden has been a challenge because of the complex algorithms for
modeling the longitudinal data. Approximation methods based on empirical Bayesian estimates (EBEs) from mixed-effects
modeling have been developed to expedite the analysis. However, our analysis demonstrated that bias in both association
test and estimation for the existing EBE-based methods remains an issue. We propose an incredibly fast and unbiased
method (simultaneous correction for EBE, SCEBE) that can correct the bias in the naive EBE approach and provide unbiased
P-values and estimates of effect size. Through application to Alzheimer’s Disease Neuroimaging Initiative data with
6 414 695 single nucleotide polymorphisms, we demonstrated that SCEBE can efficiently perform large-scale GWAS with
longitudinal outcomes, providing nearly 10 000 times improvement of computational efficiency and shortening the
computation time from months to minutes. The SCEBE package and the example datasets are available at https://github.co
m/Myuan2019/SCEBE.
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Introduction
Genome-wide association studies (GWAS) with longitudinal out-
comes allow higher statistical power to detect genetic variants
with relatively weak effects [1, 2], better identification patient
populations and better understanding of mechanisms of disease
resistance and disease progression [3], etc. Mixed-effects model
is a powerful and popular tool to model repeated measurements
[4]. However, computation burden become challenging for such
model as millions of single nucleotide polymorphisms (SNPs)
are evaluated in GWAS. Currently, the most commonly used
algorithm for testing association is either the Wald test or the
likelihood ratio test [3, 4]. In addition, local convergence may lead
to biased parameter estimation and P-values for mixed-effects
models.

Empirical Bayesian estimates (EBEs) derived from the base
mixed-effects model without covariates have long been used
as an ad hoc approach to facilitate variable selection for low-
dimension data [5, 6]. Efforts were made to utilize EBE-based
approach [thereafter referred as naïve EBE (NEBE)] to test asso-
ciation in GWAS [7, 8] with longitudinal outcomes. Despite of its
simplicity, it is well known that the EBEs are biased as they tend
to be shrunk to the corresponding population mean [6, 9] and
may not be suitable for identification of significant variables [9,
10]. Therefore, there is an urgent need to develop an efficient
and scalable algorithm to compute unbiased association test
statistics for GWAS with longitudinal outcomes.

We propose a novel, high-throughtput algorithm to provide
an efficient and scalable computation of the association test
statistics for GWAS with longitudinal outcomes. This method
not only corrects the bias caused by shrinkage and provides
numerically identical estimation and P-values to those from the
standard mixed-effects model, but also could be 10 000 times
faster than the current standard approach.

Methods
Suppose the GWAS is designed from a natural population with
three genotypes at each locus. Let mdenote the number of indi-
viduals and q denote the number of SNPs. The ith individual
has niobservations yi = (

yi1, yi2, . . . , yini
)′

at time points ti =(
ti1, ti2, . . . , tini

)′
. A typical linear mixed-effects model in GWAS can

be written in a two stage form as follows:

yi = Ziβi + ei

βi = α + xiγ + bi, i = 1, 2, · · · , m (1)

ei ∼ N
(
0, Gi

)
and bi ∼ N

(
0, R

)
.

where βi is the p×1 random effect vector. The design matrix Zi is
a ni × p matrix. Covariate xi is the genotype coded as 0, 1 or 2 for
three different genotypes. α and γ are p-dimensional intercept
and slope parameters. The base model corresponds to model (1)
with γ = 0. Residual e′

is independently folllow a multinormal
distribution with mean 0 and a ni × ni covariance matrix Gi

which chracterizes the correlation structure of within-subject
variablities. bi is the p × 1 between-subject error vector following
a multinormal distribution with mean 0 and a p × p covariance
matrix R. R characterizes the between-subject variablilities. The
standard approach of fitting model (1) is based on the likelihood
function and implemented in R packages (e.g. lme4). We call the
standard approach ‘LME’ in this article.

We propose a simultaneous correction for empirical Bayesian
estimator (SCEBE), which can simultaneously correct genetic

effects on all random parameters. The SCEBE method contains
three steps:

Step 1: fit a base mixed-effects model without covariates
(thereafter referred as base model). In this step, maximum like-
lihood estimators (MLEs) or restricted maximum likelihood esti-
mators (REMLs) are obtained for the fixed effects, between-
subject variability (random effects) and within-subject variabil-
ity under the base model.

Step 2: treat the predictors of random effects (i.e. EBEs) from
Step 1 as phenotypes for genome-wide association analysis
using a standard linear regression model. The resulting SNP
effect estimates (and corresponding P-values) are referred as
the NEBEs. The EBEs are the weighted sum of the population
and sample mean, thus suffer from the shrinkage to popu-
lation mean especially when longitudinal samples are sparse
or/and within-subject variability is large. The shrunk EBEs tend
to produce biased NEBE estimators.

Step 3: fortunately, the degree of bias can be theoretically
quantified and be used as the correction matrix to obtain the
unbiased estimators and test statistics. In this step, we cor-
rect the NEBE as well as the covariance matrix of NEBE by a
derived simultaneous correction matrix to obtain the unbiased
estimates and testing statistics for the SNP effects. The derived
correction matrix has the expression as follows:

Sc =
∑m

i=1

(
xi − x

) [
xi

(
Ip − Si

) + Si
∑m

i=1xiWi
]

∑m
i=1

(
xi − x

)2

where x is the sample mean; Ip is the p-dimensional identity

matrix; Si = (
Z′

iG
−1
i Zi + R−1

)−1
R−1 is the shrinkage matrix and

Wi = (∑m
i=1Z′

i�
−1
i Zi

)−1
Z′

i�
−1
i Zi with �i = ZiRZ′

i + Gi being the
covariance matrix of yi. We proved that the expectation of NEBE
under the true model (1) is Scγ . Therefore, Sc can be used as
the correction factor to correct the bias of NEBE. Details of the
derivation of correction matrixes are provided in Supplementary
Data/Section 1.

While this paper was in development, Sikorska et al. also
published an alternative, efficient algorithm for genome-
wide analysis of longitudinal data (GALLOP) [11]. The main
idea of GALLOP is to efficiently solve the Henderson equa-
tion by taking consideration of the block diagonal feature
of the coefficient matrix of the Henderson equation. In
this paper, we also implemented GALLOP in our R package
and applied it to the simulation and real data analysis for
comparison.

Results
ADNI data analysis

The data were downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (www.loni.usc.edu/ADNI).
The ADNI is an ongoing longitudinal multicenter study aimed at
detecting and monitoring the early stage of Alzheimer’s disease
(AD) by investigating the magnetic resonance imaging, positron
emission tomography, genetic, biochemical biomarkers and neu-
ropsychological and clinical assessment. Since the initial phase
ADNI-1 was carried out in 2004, the ADNI has been extended to
ADNI-2, ADNI-3 and ADNI-GO. There are 784 individuals enrolled
in the study and a total of 6 528 104 SNPs were sequenced and
screened after quality control. In this paper, we used one of the
most widely used imputation methods, segmented haplotype
estimation and imputation tool [12], to impute missing geno-
types. After deleting SNPs with minor allele frequency being
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SCEBE: an efficient and scalable algorithm for GWAS 3

Figure 1. (A) Running time required for LME/NEBE/GALLOP/SCEBE to complete GWAS scan of ADNI data (performed on an Ubuntu 16.04 LTS running on a server with

CPU@2.9 GB and 8 GB RAM; 784 individuals and 6 414 695 SNPs). (B) Fold change in computation time (logarithm scale) for NEBE/GALLOP/SCEBE relative to standard

LME to complete GWAS scan of 23 chromosomes in ADNI data (784 individuals and 6 414 695 SNPs; fold change is calculated as time for LME over time for alternative

methods; each bar represents a chromosome; performed on an Ubuntu 16.04 LTS running on a server with CPU@2.9 GB and 8 GB RAM).

smaller than 0.05 and SNPs with only one genotype for all
individuals, 6 414 695 SNPs were analyzed. We used repeatedly
measured Rey Auditory Verbal Learning Test (RAVLT) forgetting
scale scores over time as the longitudinal response phenotype,
and investigated the SNP effects on the progression rate of RAVLT
over time.

The key features of the proposed method SCEBE are time
efficiency and accuracy compared to standard LME. We first
compared the computation time cost for different approaches
using the ADNI data (6 414 695 SNPs) (Figure 1). The computation
was performed on an Ubuntu 16.04 LTS running on a server
with CPU@2.9G and 8G RAM. It required approximately 145 days
(single-CPU time) for LME to scan through all the SNPs, while
only 2, 37 and 118 min were needed for NEBE, SCEBE and GALLOP,
respectively (Figure 1A). Therefore, SCEBE approach was nearly
10 000 times faster than LME (Figure 1B).

The SCEBE also provide unbiased estimates and similar
P-values compared to classical LME (Figure 2). In contrast, as

expected, the estimates of effect size based on NEBE approach
had marked biases (Figure 2B). Due to the shrinkage, the
estimated effect of the SNPs on the disease progression (slope)
based on NEBE was close to zero despite that the underlying
genetic effects based on LME were apparent for many SNPs
(Figure 2B). Furthermore, the P-values from the intermediate
biased NEBE are obviously different from those of the standard
LME (Figure 2A). SCEBE corrected the bias in estimation and P-
values from NEBE and provided very similar P-values as the
standard LME (Figure 2A). In comparison, GALLOP and SCEBE
shared very similar P-values for association tests and estimation
of SNP effects for the ADNI data. Nevertheless, the SCEBE was
three to four times faster than GALLOP (Figure 1A and B).

Manhattan plot based on SCEBE for the ADNI data is pre-
sented in Figure 3. A closer look at the top 20 SNPs for both base-
line disease status (intercept) and disease progression (slope)
is displayed in Figure 4. Four out of the top 20 SNPs for the
baseline AD status are related to genes that have been reported
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Figure 2. (A) Scatter plots of P-values from NEBE/GALLOP/SCEBE against LME on the −log10 scale for ADNI data with 784 individuals and 6 414 695 SNPs. (B) Scatter

plots of estimates from NEBE/GALLOP/SCEBE against LME for ADNI data with 784 individuals and 6 414 695 SNPs.

to be associated with AD [13, 14]. Among them, rs429358 is
within apolipoprotein E (APOE), rs12721051 is within APOC1
and rs4420638 and rs56131196 are 500B downstream variants of
APOC1. It is well known that APOE4 is involved in the pathogen-
esis of both late-onset familial and sporadic AD [13]. In addition,
recent literature suggested that immunosuppression associated
with APOC1 in the context of Aβ innate immune activation is
potentially clinically relevant [14].

In addition, among the top 20 SNPs for disease progression
according to RAVLT scores, rs3799160 is within PDE10A, which
has been reported to be related to AD in recent literatures [15, 16].
It was discovered that most phosphodiesterase (PDE) isoforms
(including PDE10A) are expressed in the brain, and PDE inhibitors
are capable to improve memory performance in different animal
models of AD [15]. Additionally, expression of PDE10A was found
to be upregulated after long-term potentiation induction in the
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SCEBE: an efficient and scalable algorithm for GWAS 5

Figure 3. (A) Manhattan plot for testing associations on baseline disease status (intercept) by SCEBE for ADNI data with 784 individuals and 6 414 695 SNPs. (B) Manhattan

plot for parameter estimation on disease progression (slope) by SCEBE for ADNI data with 784 individuals and 6 414 695 SNPs.

hippocampus of awake adult rats [16], indicating that it may have
effects on memory and cognition.

Since very few GWAS have been reported using RAVLT scores
over time, the other SNPs identified in this study (Supplementary
data, Table S1) may provide new insights for biology of AD and
its disease progression. Further investigations are warranted in
the future to better understand the biology of these SNPs.

Simulation studies

Association test

We also use extensive simulations to compare the standard
LME with the NEBE, SCEBE and GALLOP approaches. Briefly,
m = 100, 500, 1000 or 10 000 subjects were simulated for a given
scenario. Two unbalanced sampling schemes, sparse (1, 2, 3 or 5
samples per subject over time) and intensive (3, 5, 7 or 9 sam-
ples per subject over time) sampling, were implemented in the

simulations. Assuming that the allele frequency of risk allele
pA is randomly sampled from a uniform distribution U

(
0.05, 0.5

)

and Hardy–Weinberg equilibrium holds in population, the prob-
abilities of three genotypes are p2

A, 2pA
(
1 − pA

)
,
(
1 − pA

)2
, respec-

tively. Hundred, 1000 and 10 000 SNPs are independently sam-
pled from a multinomial distribution with probability

(
p2

A, 2pA
(
1−

pA
)
,
(
1 − pA

)2)′
. We assumed that no effects of SNPs were on

baseline disease status (intercept), while the effect sizes of SNPs
on disease progression (slope) were randomly sampled from a
uniform distributionU

(
0, 0.5

)
. The between-subject covariance

was assumed diagonal with all elements were set to 1, while
the within-subject covariance was also assumed diagonal, which
was set to 0.5, 1, 2 or 3 to allow different levels of shrinkage. In
total, 96 scenarios were simulated and each was done for 1000
replicates.

For the association test, although the P-values calculated
based on NEBE appear to be trending the same way as those
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Figure 4. Lollipop plot for top 20 SNPs selected by SCEBE for ADNI data with 784 individuals and 6 414 695 SNPs (x-axis is −log10 of P-values and y-axis is the SNP name;

the number behind each bar is the chromosome ID).

based on the LME approach, the discrepancy in the P-values from
these two approaches was obvious as the data points scatter
around the 1:1 identity line (Supplementary data, Figure S1). On
the contrast, SCEBE provided very similar P-values for the associ-
ation test on both intercept and the slope of the model compared
to the LME approach regardless of the level of shrinkage.

As expected, compared to standard LME, NEBE severely
underestimated the effect size due to shrinkage (Supplementary
data, Figure S2). However, after corrections, the estimates
from SCEBE are virtually identical to those based on the
LME approach as the data points perfectly aligned on the 1:1
identity line. Similar to the findings based on the real ADNI
data, the simulation study also demonstrated that GALLOP
and SCEBE provided similar P-values and estimates for SNP
effects (Supplementary data, Figures S1 and S2). All of the four
investigated approaches can well controlled the type I error rate
at the nominal level (Supplementary data, Figure S3).

Computation complexity

Since multiple integrations/approximations are required, the
computation time for fitting a classic LME by lmer in ‘lme4’
package increases with the cubic of the number of individuals
[17]. In addition, for a typical GWAS with LME, millions of LME
model fittings are needed by adding one SNP at a time into the
model.

The proposed SCEBE only requires a single run of the time-
consuming LME model (i.e. the base model without SNP effects)
to estimate the random effects parameters. Then the association
studies are performed by treating the EBEs for a model parameter
as the phenotype and SNPs as genotypes using linear regression
models. This substantially reduces the per-SNP computation
time as it converts the complex LME model to simple linear
regression. Finally, the bias in SNP-effect estimates and test
statistics caused by shrinkage of EBEs is corrected by a correction
matrix. Since analytic expression for the correction matrix can
be derived theoretically, the computation can be done through
matrix–vector manipulation for all the SNPs together as long as
the computer memory allows.

Our simulation experiments confirmed that the computa-
tion time of SCEBE was drastically improved compared to that
for LME (Supplementary data, Figure S4A). Depending on sam-
ple size and number of SNPs, approximately 100–2000 folds of
increase in computation efficiency were observed for SCEBE. The

gain in time efficiency relative to LME improved with increasing
sample size or/and increasing number of SNPs (Supplementary
data, Figure S4B). In the GWAS analysis for ADNI data where
over 6 million of SNPs were involved, the gain in time efficiency
was approximately almost 10 000 time for SCEBE (Figure 1B).
Consistent with the analysis for ADNI data, the SCEBE was three
to four times faster than GALLOP in the simulation studies
(Supplementary data, Figure S4).

Confounding

Confounding due to relatedness or population stratification is
one of the most challenging issues in statistical inferences for
GWAS [18–21]. We conducted additional simulations to study the
impact of population stratification on statistical inference based
on the approaches discussed in this article. We simulated data
using the Balding–Nichols model [22–24] (details are provided in
Supplementary Data/Section 2).

As expected, in the presence of population stratification, the
quantiles of test statistics of the SNPs tend to deviate from the
theoretical quantiles of Chi-square distribution with 1 degree
of freedom (Supplementary data, Figure S5). However, SCEBE
could still provide unbiased estimates and very similar P-values
compared to the standard LME despite of population stratifica-
tion (Supplementary data, Figure S6A and B). This suggests that
population stratification has similar impact on the standard LME
and SCEBE. Furthermore, it appears that genomic control [17]
could correct the test statistics back to the theoretical distri-
bution for both SCEBE and LME when all simulated SNPs had
no effects and reduce the influence of population stratification
when there were SNPs with active effects (Supplementary data,
Figure S5).

Discussion
GWAS with longitudinal outcomes based on repeated measures
could markedly increase the statistical power, particularly for
detecting genetic variants with relatively weak effects [1, 2].
Mixed-effect modeling has been an attractive approach for
GWAS with longitudinal outcomes despite of its computational
challenge and cost [3, 25]. Althgouh EBE-based approaches can
reduce the computational time [7, 8], these approaches suffer
from shrinkage-induced bias in estimation and association test
(i.e. P values), particularly in presence of large measurement
errors or with sparse observations per subject. We proposed an
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approach that can correct the bias related to NEBE, but preserve
the feature of high throughput for NEBE. We demonstrated
that this novel approach with ADNI data and completed a
GWAS with longitudinal outcomes on millions of SNPs within
an hour in comparison with months using the standard LME
modeling, representing nearly 10 000 times improvement of
computational efficiency. In addition, our simulation shows that
the improvement of time efficiency by SCEBE increases with
increasing sample size (Supplementary data, Figure S3). This
feature suggests the potential application of SCEBE to modern
data with large sample size, particularly for emerging large-scale
genetic data from biobanks [26].

Confounding due to relatedness or population stratification
is one of the most important and challenging issues in GWAS.
Our simulation studies showed that population stratification
had similar impacts on all the approaches. Furthermore, our
simulation showed that genomic control could correct the bias
in the test statistics caused by population stratification. SCEBE
reduces the LME-based GWAS for longitudinal outcomes to stan-
dard linear-regression GWAS, where EBEs are treated as pheno-
types. This allows coupling SCEBE with other more sophisticated
approaches, such as, EIGENSTRAT/principal components analy-
sis [19, 20] and linkage disequilibrium regression [21], for control-
ling bias due to population stratification. Future research on how
to use SCEBE with these confounding-controlling approaches is
warranted.

Over the last decade, different approaches have been
attempted for nonlinear GWAS of longitudinal outcomes [27–
29]. However, these methods are extremely time-consuming
and often require hours for only 1000 tests [1], which is not
scalable for large-scale GWAS data with millions of SNPs. In the
present paper, although we limited ourselves to linear mixed-
effects modeling, SCEBE can be easily extended to nonlinear
longitudinal data, which open the door for efficient and scalable
functional GWAS for more complex nonlinear longitudinal traits.

While this paper was in development, Sikorska et al. also
present a new algorithm that expedites genome-wide analysis
of longitudinal data (GALLOP) [11]. GALLOP solves the equivalent
penalized least squares problem efficiently and factorizations
and transformations are used to avoid inversion of large matri-
ces. Both of our simulation study and real-data analysis suggest
that GALLOP and SCEBE provide similar P-values and estimation
for effect size in the context of linear model for disease progres-
sion. However, SCEBE was three to four times faster than GALLOP.
More importantly, when generalizing to nonlinear mixed-effects
model, our preliminary simulation study indicated that the per-
formance of GALLOP could be less consistent and exhibited
suboptimal performance compared to SCEBE (Supplementary
Data/Section 3 and Supplementary data, Figure S7). This sug-
gests that SCEBE is robust and consistent for GWAS using both
linear and nonlinear longitudinal data. Future investigation may
be needed in this area.

Key points
• Modeling GWAS data on longitudinal outcome using

mixed-effects model can improve statistical power;
however, computational complexity and efficiency
remain difficult and challenging.

• SCEBE provides almost identical estimation and P-
values compared to the standard likelihood based
approach.

• SCEBE provides nearly 10 000 times improvement of
computational efficiency and shortens the computa-
tion time from months to minutes.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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